Theoretical Mechanics Final Exam December 11, 2018

- 1. (20 Pts.) Consider three pendula, each of length l, that are coupled by identical springs with spring constant *k* . The pendula are horizontally separated by the natural rest length of the springs
	- d . The outer pendula have a mass m and the center pendulum has a mass $2m$.
	- a. Draw a suitable diagram for this problem, letting ϕ_i represent the angle of the pendula.
	-

\n- a. Draw a suitable diagram for this problem, letting
$$
\phi_i
$$
 represent the angle of the pendula.
\n- b. Assuming the angles ϕ_i remain small, show that the Lagrangian of this system is\n
$$
L = \frac{1}{2}ml^2\dot{\phi}_1^2 + ml^2\dot{\phi}_2^2 + \frac{1}{2}ml^2\dot{\phi}_3^2
$$
\n
$$
-\left(\frac{1}{2}mgl\phi_1^2 + mgl\phi_2^2 + \frac{1}{2}mgl\phi_3^2 + \frac{1}{2}kl^2\left(\phi_2 - \phi_1\right)^2 + \frac{1}{2}kl^2\left(\phi_3 - \phi_2\right)^2\right)
$$
\n
\n- c. Evaluate the mass and potential matrices and write the eigenvalues equation (do not attempt to be given by the equation.)
\n

- c. Evaluate the mass and potential matrices and write the eigenvalue equation (do not attempt to solve).
- 2. (20 Pts.) Consider a canonical transformation generated by
 $S_2(q^1, \dots, q^n, P_1, \dots, P_n) = \sum_{n=0}^{n} q^i P_i + \varepsilon G(q^1, q^2, \dots, q^n, P_n)$

ler a canonical transformation generated by
\n
$$
S_2(q^1, \dots, q^n, P_1, \dots, P_n) = \sum_{i=1}^n q^i P_i + \varepsilon G(q^1, \dots, q^n, P_1, \dots, P_n)
$$

where ε is an infinitesimal quantity.

a. By neglecting any order ε^2 or higher terms, show that the resulting canonical transformation differs from the identity transformation by terms of order ε with

$$
P_i = p_i - \varepsilon \frac{\partial G}{\partial q^i}
$$

$$
Q^i = q^i + \varepsilon \frac{\partial G}{\partial P_i} = q^i + \varepsilon \frac{\partial G}{\partial p_i}
$$

Specifically, why is the second equality in the Q^i equation valid?

- b. Under this canonical transformation, show that the function $F(q^1, \dots, q^n, p_1, \dots, p_n)$ $F(q^1, \dots, q^n, p_1, \dots, p_n)$ changes Under this canonical transformation, show that the function $F(q^1, \dots, q^n, p_1, \dots, p_n)$
by an amount $dF \equiv F(Q^1, \dots, Q^n, P_1, \dots, P_n) - F(q^1, \dots, q^n, p_1, \dots, p_n) = \varepsilon [F, G]$ formation, show that the function $F(q^1, \dots, q^n, p_1, \dots,$
 $\ldots, Q^n, P_1, \dots, P_n) - F(q^1, \dots, q^n, p_1, \dots, p_n) = \varepsilon [F,$ on, show that the function P^n , P_1 , \cdots , P_n) – $F(q^1, \cdots, q^n)$ *n n dF F Q Q P P F q q p p F G* to linear order in ε where $[F, G]$ is the Poisson Bracket.
- c. If *G* is a constant of the motion of the Hamiltonian flow with Hamiltonian *H*, what is *dH*? What can you conclude? (Hint: Converse of Noether's Theorem)
- 3. (25 Pts.) Consider a string of uniform mass density σ with fixed end points and initial configuration

$$
u(x=0,t) = 0 = u(x=L,t)
$$

$$
u(x,t=0) = f(x) = a \sin\left(\frac{3\pi}{L}x\right)
$$

$$
\frac{\partial u}{\partial t}(x,t=0) = 0
$$

a. Write down the Lagrangian of this system assuming a uniform tension τ in the string. Then

use the Euler-Lagrange equation to derive the equation of motion for the string.

b. Introduce a linear damping force on the string. This change will modify the equation of motion to,

$$
\sigma \frac{\partial^2 u}{\partial t^2} = \tau \frac{\partial^2 u}{\partial x^2} - \beta \frac{\partial u}{\partial t}
$$

Explain why β must be a positive quantity.

- c. Substitute a solution of the form $u(x,t) = \rho(x)\phi(t)$ and into the equation of motion in part b. Use separation of variables then the boundary and initial conditions to determine the eigenfunctions $\rho_n(x)$, and the space mode of the solution (don't solve for $\phi(t)$ yet).
- eigenfunctions $\rho_n(x)$, and the space mode of the solution (don't solve for $\phi(t)$ yet).
d. Show that $\phi(t)$ will have a functional form of $\phi(t) \propto e^{Ft} [\cos(Gt) (F/G)\sin(Gt)]$, if

$$
\beta^2 < \frac{36\pi^2}{L^2}\sigma\tau.
$$

You need not determine the coefficients *F*,*G*. [Hint: After separating variables in part c., assume $\phi(t) = e^{\gamma t}$ where γ is a constant.]

4. (20 Pts.) We have discussed in class the solution of the wave equation for two point sources, located at $z = \pm d$, Problem 9.14. In the specific case that the sources are in phase, the far field radiated power (solid) angular distribution is

$$
\frac{dP}{d\Omega} = \frac{P_0}{2\pi} \Big[1 + \cos\big((4\pi d/\lambda)\cos\theta\big) \Big]
$$

where P_0 is the power radiated by a single source, λ is the radiation wavelength, and θ is the usual polar angle with $\theta = 0$ along the *z* axis.

- a. Assume $\lambda = 4d$. This means there is one half wavelength change in the wave from one point source to the other. Calculate the locations θ that are maxima or minima in the power per unit solid angle.
- b. What are the values of the angular power at the maxima and minima? Explain physically.
- c. Now assume $\lambda = d$. Calculate locations θ of angular power maxima and minima. How many maxima and minima are there? Explain. [Hint: $\cos\theta$ varies between 1 and -1 as θ varies between 0 and π .]
- d. Suppose one has a single point source and a reflecting wall. How should one arrange the source to get the same wave field for $z > 0$ as in Problem 9.14?
- 5. (15 Pts.) In understanding both the wave equation and heat equation, the eigenfunctions of the three dimensional Helmholtz equation

$$
\nabla^2 \Phi + k^2 \Phi = 0
$$

are important.

- a. Show the functions $\Phi_{\alpha,\beta,\gamma}(x, y, z) = e^{i\alpha x} e^{i\beta y} e^{i\gamma z}$ are eigenfunctions and compute the eigenvalue k in terms of α , β , and γ .
- b. What are the purely real eigenfunctions and associated eigenvalues whose values vanish at What are the purely real eigenfunctions and associated eigenvalues whose values vanish at values $x = 0, a, y = 0, b$, and $z = 0, c$? What is the frequency of the lowest non-zero mode of a cube having $b = c = a$?
- c. What are the purely real eigenfunctions and associated eigenvalues whose derivatives vanish What are the purely real eigenfunctions and values $x = 0, a, y = 0, b, \text{ and } y = 0, c$?